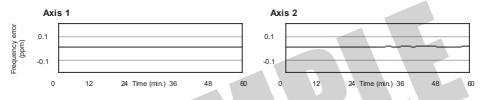
Product RLU20 laser
Serial number 010R62
Date of calibration 23rd April 2021

Calibration certificate

Specification


Axis 1

Vacuum wavelength Equivalent frequency $\begin{array}{l} 0.6329900000~\mu m~\pm 0.1~ppm \\ 473613260.9~MHz \end{array}$

Axis 2

 $\begin{array}{l} 0.6329914500~\mu m~\pm 0.1~ppm \\ 473612176.0~MHz \end{array}$

Measured values and uncertainties of calibration

	Axi	is 1	Axis 2		
Results	Value (MHz)	Value (ppm)	Value (MHz)	Value (ppm)	
Laser frequency:	473613265.0	-	473612181.1	-	
Laser frequency error:	4.2	0.009	5.3	0.011	
Stability (RMS):	0.5	0.0010	0.5	0.0010	
Maximum laser frequency error:	5.2	0.011	6.3	0.013	
Uncertainty of measurement (k=2):	±5.9	±0.01	±5.9	±0.01	

Reference standards	Ref. no.	Lab	Certificate no.	Calibration date
Iodine stabilised HeNe laser	RUK27030	NPL	2017050069-LL03	24th May 2017
Frequency counter - axis 1	MTE/A161	UKAS0152	U324572	23rd February 2021
Frequency counter - axis 2	MTE/A109	UKAS0152	U323320	2nd February 2021
Reference HeNe laser	XL-80 REF25	Renishaw	23CN40-210419-00	19th April 2021
Test procedure	WI-10647			

Authorised signature	Signatory	Position	Issue date
CM Ment	Chris Hunt	General Manager	23rd April 2021

This certificate may not be reproduced other than in full, except with the prior written approval of:

Renishaw plc

Laser & Calibration Products Division Bath Road, Woodchester Stroud

Gloucestershire GL5 5EY United Kingdom Tel +44 (0) 1453 524524 Certificate number 010R62-210423-00

L-9904-2819/04

Calibration notes

- Lasers (XM, XL, ML, HS and RLU) are calibrated by comparison to a reference HeNe laser using an
 optical beat frequency technique. Reference lasers are routinely calibrated against an iodine-stabilised
 HeNe laser supplied by the National Physical Laboratory (NPL), or by a national standards laboratory. All
 frequency measurements are taken over a 1 hour period.
- 2. Air pressure and relative humidity (RH) sensors are installed in a compensator (XC and RCU). The air pressure sensors are calibrated over 650 mbar to 1150 mbar range in a temperature controlled oven by direct comparison with a reference pressure meter. The RH sensors (where fitted) are certified by the manufacturer to be within specification. They are calibrated by comparison of the readings with those from a reference RH meter at a single applied humidity.
- Air and material temperature sensors (XC and RCU) are calibrated by direct comparison with transfer platinum resistance thermometers (PRTs) in a temperature controlled water bath over 0 °C to 40 °C (50 °C for material sensor). The transfer PRTs are routinely calibrated against reference PRTs.
- 4. Rotary axis calibrators (XR20) are calibrated using a HeNe laser angular interferometer.
- Ballbar transducers (QC20-W and QC10) are calibrated using a HeNe laser interferometer. The scale factor (QC10 only) is calculated and must be entered into the Renishaw application software prior to use.
- 6. Ballbar calibrators are calibrated by direct comparison with a reference ballbar calibrator (calibrated by a national standards laboratory) using a reference ballbar as a transfer standard. The measured values for the ballbar calibrator must be entered into the Renishaw application software prior to use.
- 7. Traceability. All the reference standards (listed overleaf) used in these calibrations are traceable either directly to major international metrology institutes who have signed the CIPM Mutual Recognition Agreement (e.g. NPL: UK; LNE: France; NIST: USA; PTB: Germany; NMIJ: Japan) or to a national accreditation body (e.g. UKAS: UK; A2LA: USA).
- 8. Environment. The equipment used for calibration is in a facility held between 15 °C and 25 °C.
- Uncertainty calculations. The uncertainty calculations have been carried out according to the European Co-operation for Accreditation document EA-4/02.
- Quality accreditation. All calibrations above are covered by Renishaw's ISO 9001 quality assurance system. The system is audited and certified by an accredited agency.
- 11. Re-calibration. Customers may wish to confirm that systems are performing within published specifications over time. If so, it is recommended that they should be periodically re-calibrated. Please note that compensators and temperature sensors are re-calibrated only at a single applied temperature, air pressure and humidity. Please refer to the appropriate system manual for further details.