

QUANTiC™ RKLC40-S incremental linear encoder system

Contents

Legal notices	4
Storage and handling	9
QUANTiC readhead installation drawing	11
RKLC40-S scale installation drawing	12
Equipment required for installing the RKLC40-S scale	13
Cutting the RKLC40-S scale.	14
Applying the RKLC40-S scale	15
Fitting the end clamps	16
Reference mark selector and limit magnet installation	17
QUANTiC readhead quick-start guide	18
Readhead mounting and alignment	19
System calibration	20
Restoring factory defaults	21
Switching Automatic Gain Control (AGC) on or off	21
Troubleshooting	22
Output signals	25
QUANTIC readhead termination options	27
Speed	28
Electrical connections	29
Output specifications	31
General specifications	33
RKLC40-S scale specifications	34
Reference mark	35
Limit switches	35

Legal notices

Patents

Features of Renishaw's QUANTiC™ and RKLC40-S encoder systems are the subjects of the following patents and patent applications:

EP1173731	US6775008	JP4750998	CN100543424	EP1766334
JP4932706	US7659992	CN100507454	EP1766335	IN281839
JP5386081	US7550710	CN101300463	EP1946048	JP5017275
US7624513	CN101310165	EP1957943	US7839296	CN108351229
EP3347681	JP2018530751	KR20180052676	US20180216972	WO2017203210
CN1314511	EP1469969	EP2390045	JP5002559	US8987633
US8466943				

Terms and conditions and warranty

Unless you and Renishaw have agreed and signed a separate written agreement, the equipment and/or software are sold subject to the Renishaw Standard Terms and Conditions supplied with such equipment and/or software, or available on request from your local Renishaw office.

Renishaw warrants its equipment and software for a limited period (as set out in the Standard Terms and Conditions), provided that they are installed and used exactly as defined in associated Renishaw documentation. You should consult these Standard Terms and Conditions to find out the full details of your warranty.

Equipment and/or software purchased by you from a third-party supplier is subject to separate terms and conditions supplied with such equipment and/or software. You should contact your third-party supplier for details.

Declaration of Conformity

Renishaw plc hereby declares that the QUANTiC encoder system is in compliance with the essential requirements and other relevant provisions of:

- the applicable EU directives
- the relevant statutory instruments under UK law

The full text of the declaration of conformity is available at: www.renishaw.com/productcompliance.

Compliance

Federal Code Of Regulation (CFR) FCC Part 15 – RADIO FREQUENCY DEVICES

47 CFR Section 15.19

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

47 CFR Section 15.21

The user is cautioned that any changes or modifications not expressly approved by Renishaw plc or authorised representative could void the user's authority to operate the equipment.

47 CFR Section 15.105

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment.

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

47 CFR Section 15.27

This unit was tested with shielded cables on the peripheral devices. Shielded cables must be used with the unit to ensure compliance.

Supplier's Declaration of Conformity

47 CFR § 2.1077 Compliance Information

Unique Identifier: QUANTIC

Responsible Party - U.S. Contact Information

Renishaw Inc. 1001 Wesemann Drive West Dundee Illinois IL 60118 United States

Telephone number: +1 847 286 9953

Email: usa@renishaw.com

ICES-003 — Industrial, Scientific and Medical (ISM) Equipment (Canada)

This ISM device complies with CAN ICES-003.

Cet appareil ISM est conforme à la norme ICES-003 du Canada.

Intended use

The QUANTiC encoder system is designed to measure position and provide that information to a drive or controller in applications requiring motion control. It must be installed, operated, and maintained as specified in Renishaw documentation and in accordance with the Standard Terms and Conditions of the Warranty and all other relevant legal requirements.

Further information

Further information relating to the QUANTiC encoder range can be found in the QUANTiC™ series encoder system data sheet (Renishaw part no. L-9517-9778), Advanced Diagnostic Tool ADTi-100 data sheet (Renishaw part no. L-9517-9699), Advanced Diagnostic Tool ADTi-100 and ADT View software user guide (Renishaw part no. M-6195-9413) and Advanced Diagnostic Tool ADTi-100 and ADT View software quick-start guide (Renishaw part no. M-6195-9321). These can be downloaded from our website at www.renishaw.com/quanticdownloads and are also available from your local Renishaw representative.

Packaging

The packaging of our products contains the following materials and can be recycled.

Packing component	Material	ISO 11469	Recycling guidance
Outer box	Cardboard	Not applicable	Recyclable
Outer box	Polypropylene	PP	Recyclable
Imposito	Low density polyethylene foam	LDPE	Recyclable
Inserts Cardboard		Not applicable	Recyclable
Pogo	High density polyethylene bag	HDPE	Recyclable
Bags	Metalised polyethylene	PE	Recyclable

REACH regulation

Information required by Article 33(1) of Regulation (EC) No. 1907/2006 ("REACH") relating to products containing substances of very high concern (SVHCs) is available at www.renishaw.com/REACH.

Disposal of waste electrical and electronic equipment

The use of this symbol on Renishaw products and/or accompanying documentation indicates that the product should not be mixed with general household waste upon disposal. It is the responsibility of the end user to dispose of this product at a designated collection point for waste electrical and electronic equipment (WEEE) to enable reuse or recycling. Correct disposal of this product will help to save valuable resources and prevent potential negative effects on the environment. For more information, contact your local waste disposal service or Renishaw distributor.

QUANTIC software notices

Third party licences

The QUANTIC product includes embedded software (firmware) to which the following notices apply:

Copyright © 2009 - 2013 ARM LIMITED

All rights reserved.

This Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © NXP Semiconductors, 2012

All rights reserved.

Software that is described herein is for illustrative purposes only which provides customers with programming information regarding the LPC products.

This software is supplied "AS IS" without any warranties of any kind, and NXP Semiconductors and its licensor disclaim any and all warranties, express or implied, including all implied warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property rights.

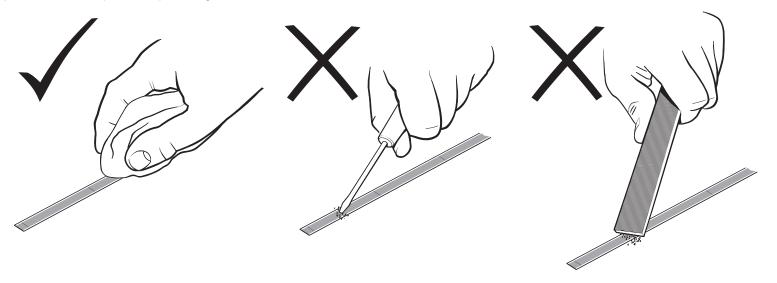
- NXP Semiconductors assumes no responsibility or liability for the use of the software, conveys no license or rights under any patent, copyright, mask work right, or any other intellectual property rights in or to any products.
- NXP Semiconductors reserves the right to make changes in the software without notification.
- NXP Semiconductors also makes no representation or warranty that such application will be suitable for the specified use without further testing or modification.

Permission to use, copy, modify, and distribute this software and its documentation is hereby granted, under NXP Semiconductors' and its licensor's relevant copyrights in the software, without fee, provided that it is used in conjunction with NXP Semiconductors microcontrollers. This copyright, permission, and disclaimer notice must appear in all copies of this code.

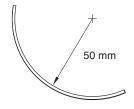
US government notice

NOTICE TO UNITED STATES GOVERNMENT CONTRACT AND PRIME CONTRACT CUSTOMERS

This software is commercial computer software that has been developed by Renishaw exclusively at private expense. Notwithstanding any other lease or licence agreement that may pertain to, or accompany the delivery of, this computer software, the rights of the United States Government and/or its prime contractors regarding its use, reproduction and disclosure are as set forth in the terms of the contract or subcontract between Renishaw and the United States Government, civilian federal agency or prime contractor respectively. Please consult the applicable contract or subcontract and the software licence incorporated therein, if applicable, to determine your exact rights regarding use, reproduction and/or disclosure.

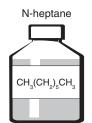

Renishaw End User Licence Agreement (EULA)

Renishaw software is licensed in accordance with the Renishaw licence at: www.renishaw.com/legal/softwareterms.



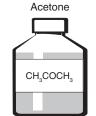
Storage and handling

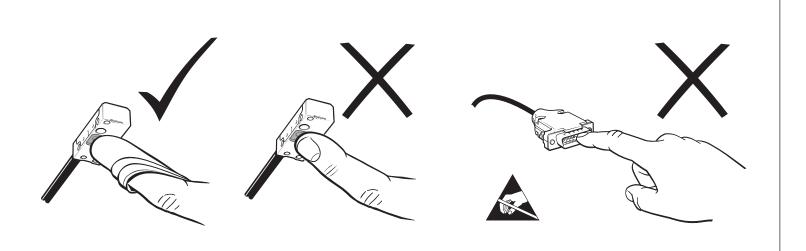
QUANTIC non-contact optical encoder systems provide good immunity against contaminants such as dust, fingerprints and light oils. However, in harsh environments such as machine tool applications, protection should be provided to prevent ingress of coolant or oil.

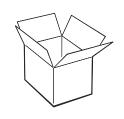

Minimum bend radius

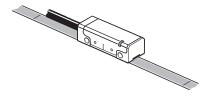
NOTE: During storage ensure the self-adhesive tape is on the outside of the bend.

Scale and readhead



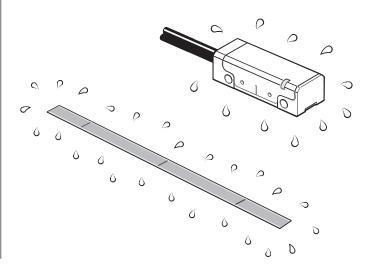

Readhead only

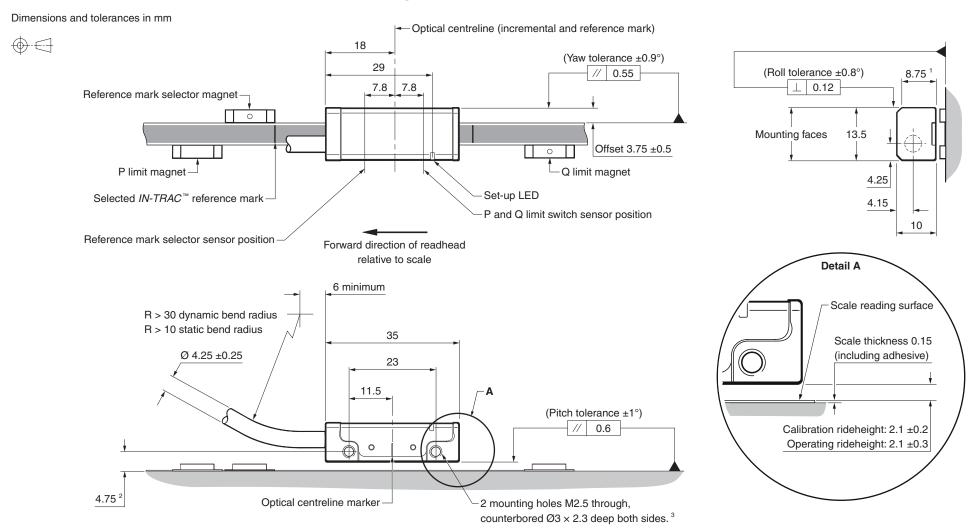



Temperature

Storage	
System	−20 °C to +70 °C

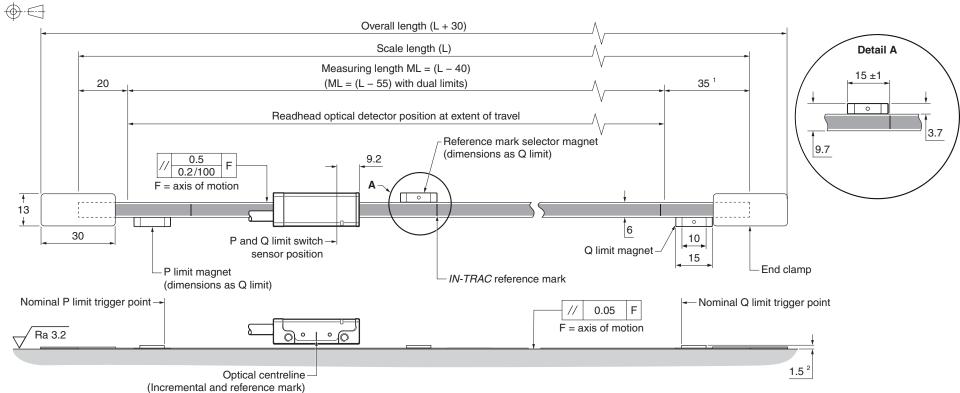
Installation	
System	+10 °C to +35 °C


Operating	
System	0 °C to +70 °C


Humidity

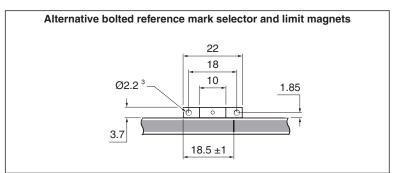
95% relative humidity (non-condensing) to IEC 60068-2-78

QUANTIC readhead installation drawing


Extent of mounting faces.

Dimension from substrate.

³ The recommended thread engagement is 5 mm minimum (7.5 mm including counterbore) and the recommended tightening torque is 0.25 Nm to 0.4 Nm.


RKLC40-S scale installation drawing

Dimensions and tolerances in mm

NOTES:

- The reference mark selector and limit actuator locations are correct for the readhead orientation shown.
- External magnetic fields greater than 6 mT, in the vicinity of the readhead, may cause false activation of the limit and reference sensors.
- ¹ 20 mm when the Q limit is not used
- Dimension from substrate.
- Supplied with 2 M2 x 4 screws.

Equipment required for installing the RKLC40-S scale

Required parts:

- Appropriate length of RKLC40-S scale (see 'RKLC40-S scale installation drawing' on page 12)
- A pair of standard 13 mm wide end clamps (A-9523-4015). Alternatively, a pair of 6 mm wide end clamps (A-9523-4111) are also available.
- RGG-2 two-part epoxy adhesive (A-9531-0342)
- Appropriate cleaning solvents (see 'Storage and handling' on page 9)
- RKLC40-S side mount scale applicator (A-6547-1912)
- 2 M2.5 screws
- · Green spacer (supplied with QUANTiC readhead)
- · Lint-free cloth

Optional parts:

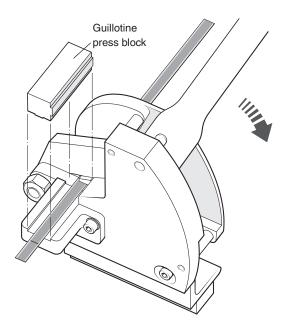
- Renishaw scale wipes (A-9523-4040)
- · Guillotine (A-9589-0071) or shears (A-9589-0133) for cutting RKLC40-S to length required
- Magnet applicator tool (A-9653-0201)
- · Reference mark and limit magnets; see table below

	Part number		
Magnet type	Adhesive mounted magnets (standard)	Bolted magnets	
Reference mark selector 1	A-9653-0143	A-9653-0290	
Q limit	A-9653-0139	A-9653-0291	
P limit	A-9653-0138	A-9653-0292	

¹ The reference mark selector magnet is only required for 'Customer selectable reference mark' readheads. For more information refer to QUANTIC [™] series encoder system data sheet (Renishaw part no. L-9517-9778).

Cutting the RKLC40-S scale

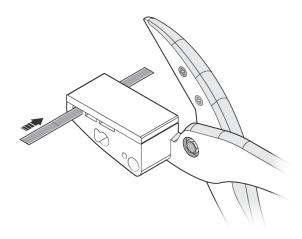
If required cut the RKLC40-S scale to length using a guillotine or shears.


Using the guillotine

The guillotine should be held securely in place, using a suitable vice or clamping method.

Once secured, feed the RKLC40-S scale through the guillotine as shown, and place the guillotine press block down onto the scale.

NOTE: Ensure the block is in the correct orientation (as shown below).

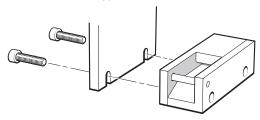

Guillotine press block orientation when cutting RKLC40-S scale

Whilst holding the block in place, in a smooth motion, pull down the lever to cut through the scale.

Using the shears

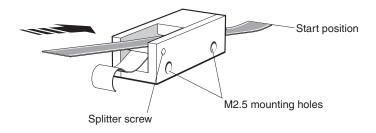
Feed the RKLC40-S scale through the first aperture on the shears (as shown).

Hold the scale in place and close the shears in a smooth motion to cut through the scale.

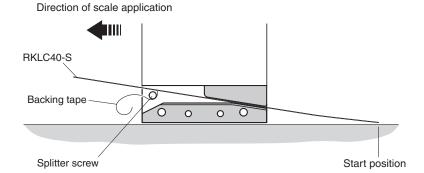


Applying the RKLC40-S scale

1. Allow the scale to acclimatise to the installation environment prior to installation.


NOTE: The RKLC40-S scale should be installed between +10 °C and +35 °C to ensure scale mastering.

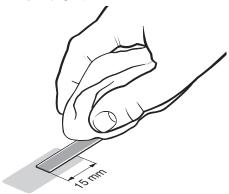
- 2. Mark out the start position for the scale on the axis substrate ensuring that there is enough room for the end clamps (see 'RKLC40-S scale installation drawing' on page 12).
- 3. Thoroughly clean and degrease the substrate using the recommended solvents (see 'Storage and handling' on page 9). Allow the substrate to dry before applying the scale.
- 4. Mount the scale applicator to the readhead mounting bracket. Place the green spacer supplied with the readhead between the applicator and the substrate to set the nominal height.



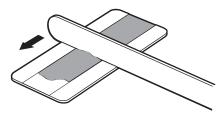
NOTE: The scale applicator can be mounted either way round to enable the easiest orientation for the installation of the scale.

- 5. Move the axis to the start of travel leaving enough room for the scale to be inserted through the applicator, as shown below.
- 6. Begin to remove the backing paper from the scale and insert the scale into the applicator up to the start position. Ensure the backing tape is routed under the splitter screw.

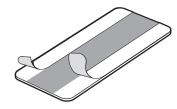
- Apply firm finger pressure via a clean, dry, lint-free cloth to ensure the scale end adheres well to the substrate.
- 8. Slowly and smoothly move the applicator through the entire axis of travel. Ensure the backing paper is pulled manually from the scale and does not catch under the applicator.

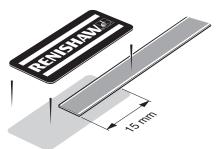

- 9. During installation ensure the scale adheres to the substrate using light finger pressure.
- 10. Remove the applicator and, if necessary, adhere the remaining scale manually.
- 11. Apply firm finger pressure via a clean, dry, lint-free cloth along the length of the scale after application to ensure complete adhesion.
- 12. Clean the scale using Renishaw scale wipes or a clean, dry, lint-free cloth.
- 13. Fit the end clamps (see 'Fitting the end clamps' on page 16).

Fitting the end clamps


The end clamp kit is designed to be used with the RKLC40-S scale to ensure the scale is mastered to the substrate.

NOTE: The end clamps can be mounted before or after readhead installation.


 Clean both ends of the scale and the area where the end clamps are to be fitted using Renishaw scale wipes or one of the recommended solvents (see 'Storage and handling' on page 9).


2. Thoroughly mix up a sachet of RGG-2 two-part epoxy adhesive and apply a small amount to the underside of the end clamp.

The end clamp features two small regions of contact adhesive. These will temporarily hold the end clamp in position while the epoxy cures. Remove the backing tape from either side.

4. Immediately position the end clamp over the end of the scale and push down to ensure complete adhesion. Allow 24 hours at 20 $^{\circ}$ C for a full cure. ¹

CAUTION: Ensure that excess epoxy is wiped away from the scale as it may affect the readhead signal level.

To ensure scale end movement of typically < 1 μm, stabilise the system at least 5 °C higher than the maximum customer application temperature for a minimum of 8 hours. For example: Customer application = 23 °C axis temperature. Stabilise the system at 28 °C for a minimum of 8 hours.

Reference mark selector and limit magnet installation

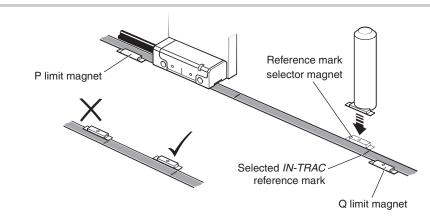
IMPORTANT: Allow 24 hours after the scale application before fitting the magnets.

As the readhead passes the reference mark selector magnet or limit switch magnet, a force of up to 0.2 N is generated between the magnet and the concentrators on the readhead.

- The design of the bracket should be sufficiently stiff so that it is able to tolerate such force without distorting.
- Fitting the scale and end clamps according to the instructions in this manual prevents the magnetic force from disturbing the scale.

For accuracy and ease of positioning of the reference mark selector and limit magnets, the applicator tool should be used.

- 1. Attach the magnet to the applicator tool as shown.
- 2. Remove the self-adhesive backing paper from the magnet.



- 3. Place the magnet in the chosen location alongside the edge of the scale ensuring that it is not mounted on the scale.
 - Limit magnets can be positioned at any user defined location along the axis length.
 - The reference mark selector magnet should be positioned adjacent to the selected IN-TRAC reference mark as shown.

The reference mark selector magnet is only required for 'Customer selectable reference mark' readheads.

For more information refer to QUANTIC™ series encoder system data sheet (Renishaw part no. L-9517-9778).

NOTE: The reference mark selector and limit actuator locations are correct for the readhead orientation shown.

 Apply firm finger pressure to the magnet via a clean, dry, lint-free cloth to ensure complete adhesion

NOTES:

- The limit output is nominally asserted when the readhead limit switch sensor passes the limit
 magnet leading edge, but can trigger up to 3 mm before that edge (see 'RKLC40-S scale
 installation drawing' on page 12).
- The reference and limit magnets may creep when influenced by magnetic materials in close
 proximity. In such cases, they should be held in place using an additional fillet of epoxy glue
 or similar along the outer edge of the magnet assembly. Alternative bolted reference and limit
 magnets are available (see 'RKLC40-S scale installation drawing' on page 12).
- External magnetic fields greater than 6 mT, in the vicinity of the readhead, may cause false activation of the limit and reference sensors.

QUANTIC readhead quick-start guide

This section is a quick-start guide to installing a QUANTiC readhead. More detailed information on installing the readhead is contained on page 19 to page 21 of this installation guide. The optional Advanced Diagnostic Tool ADTi-100 ¹ (A-6165-0100) and ADT View software ² can be used to aid installation and calibration.

INSTALLATION

Ensure the scale, readhead optical window and mounting faces are clean and free from obstructions.

If required, ensure the reference mark selector magnet is correctly positioned (see 'RKLC40-S scale installation drawing' on page 12).

Connect the readhead to the receiving electronics and power-up. The set-up LED on the readhead will flash.

Install and align the readhead to maximise signal strength over the full axis of travel as indicated by a green flashing LED.

CALIBRATION

Cycle the power to the readhead to initiate the calibration routine. The LED will single-flash blue.

Move the readhead along the scale at slow speed (< 100 mm/s), without passing a reference mark, until the LED starts double-flashing blue.

No reference mark
used, the calibration routine should now be exited by

Move the readhead back and forth over the selected reference mark until the LED stops flashing.

If a reference mark is not being used, the calibration routine should now be exited by cycling the power. The LED will stop flashing.

The system is now calibrated and ready for use. Calibration values, Automatic Gain Control (AGC) and Automatic Offset Control (AGC) status, are stored in readhead non-volatile memory at power down.

NOTE: If the calibration routine fails (LED remains single-flashing blue), restore the readhead factory defaults (see 'Restoring factory defaults' on page 21) and repeat the installation and calibration routine.

For more details refer to the Advanced Diagnostic Tool ADTi-100 and ADT View software user guide (Renishaw part no. M-6195-9413) and Advanced Diagnostic Tool ADTi-100 and ADT View software quick-start guide (Renishaw part no. M-6195-9321).

The software can be downloaded for free from www.renishaw.com/adt.

Readhead mounting and alignment

Mounting brackets

The bracket must have a flat mounting surface and should provide adjustment to enable conformance to the installation tolerances, allow adjustment to the rideheight of the readhead, and be sufficiently stiff to prevent deflection or vibration of the readhead during operation.

Readhead set-up

Ensure that the scale, readhead optical window and mounting face are clean and free from obstructions.

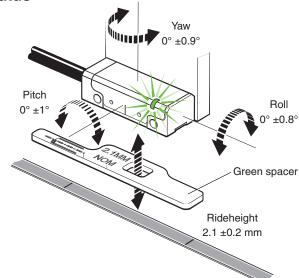
NOTE: When cleaning the readhead and the scale apply the cleaning fluid sparingly, do not soak.

- 1. Mount the readhead to the bracket using 2 M2.5 screws.
- To set the nominal rideheight, place the green spacer with the aperture under the optical centre of the readhead to allow normal LED function during set-up procedure.
- Adjust the readhead to achieve a flashing green LED along the full axis of travel. The faster the flash rate, the closer it is to optimum set-up.

The optional Advanced Diagnostic Tool ADTi-100 (A-6195-0100) and ADT View software can be used to optimise signal strength in challenging installations. See www.renishaw.com/adt for more information.

NOTE: When reinstalling the readhead the factory defaults should be restored (see 'Restoring factory defaults' on page 21).

Readhead set-up LED status


Green

flashing

Orange Red flashing

Readhead LED diagnostics 1

Mode	LED	Status
	Green flashing	Good set-up: maximise flash rate for optimum set-up
Installation mode	Orange flashing	Poor set-up: adjust readhead to obtain green flashing LED
	Red flashing	Poor set-up: adjust readhead to obtain green flashing LED
Calibration mode	Blue single-flashing	Calibrating incremental signals
Calibration mode	Blue double-flashing	Calibrating reference mark
	Blue	AGC on; optimum set-up
Normal aparation	Green	AGC off; optimum set-up
Normal operation	Red	Poor set-up; signal may be too low for reliable operation
	Blank flash	Reference mark detected (visible indication at speed < 100 mm/s only)
	Four red flashes	Low signal, over signal, or overspeed; system in error
Alarm	Red and purple flashing (analogue variant only)	AGC out of normal operating range

See 'Troubleshooting' on page 22 for more information on diagnosing faults.

System calibration

NOTE: The functions described below can also be carried out by using the optional ADTi-100 and ADT View software. See www.renishaw.com/adt for more information.

Before system calibration:

- 1. Clean the scale and readhead optical window.
- 2. If reinstalling, restore the factory defaults (see 'Restoring factory defaults' on page 21).
- 3. Maximise the signal strength along the full length of travel (set-up LED is flashing green).

NOTE: During calibration the speed should not exceed 100 mm/s or the readheads' maximum speed, whichever is slowest.

Incremental signal calibration

- Cycle the power to the readhead or connect the 'Remote CAL' output pin to 0 V for < 3 seconds. The readhead will then periodically single-flash blue to indicate it is in calibration mode as detailed in 'Readhead mounting and alignment' on page 19. The readhead will only enter calibration mode if the LED is flashing green.
- Move the readhead at slow speed along the axis, ensuring it does not pass a reference mark, until the LED starts double-flashing indicating the incremental signals are now calibrated and the new settings are stored in the readhead memory.
- The system is now ready for reference mark phasing. For systems without a reference mark, cycle the power to the readhead or connect the 'Remote CAL' output pin to 0 V for < 3 seconds to exit calibration mode.
- 4. If the system does not automatically enter the reference mark phasing stage (LED continues single-flashing) the calibration of the incremental signals has failed. After ensuring failure is not due to overspeed (> 100 mm/s, or exceeding the readhead maximum speed), exit the calibration routine, restore factory defaults (see 'Restoring factory defaults' on page 21) and check the readhead installation and system cleanliness before repeating the calibration routine.

NOTE: For analogue variants of QUANTiC ensure the correct termination of output signals (see 'Recommended signal termination' on page 30).

Reference mark phasing

 Move the readhead back and forth over the selected reference mark until the LED stops flashing and remains solid blue. The reference mark is now phased.

NOTE: Only the chosen reference mark that has been used in the calibration routine is guaranteed to remain phased.

- 2. The system automatically exits the calibration routine and is ready for operation.
- AGC and AOC are automatically switched on once calibration is complete. To switch off AGC refer to 'Switching Automatic Gain Control (AGC) on or off' on page 21.
- If the LED continues double-flashing after repeatedly passing the chosen reference mark it is not being detected.
 - Ensure that the correct readhead configuration is being used. Readheads can either output all reference marks or only output a reference mark where a reference selector magnet is fitted depending on the options chosen when ordering.
 - Check that the reference mark selector magnet is fitted in the correct location relative to readhead orientation (see 'RKLC40-S scale installation drawing' on page 12).

Calibration routine manual exit

To exit the calibration routine at any stage, cycle the power to the readhead or connect the 'Remote CAL' output pin to 0 V for < 3 seconds. The LED will stop flashing.

LED status during system calibration

LED	Settings stored
Blue single-flashing	None, restore factory defaults and recalibrate
Blue double-flashing	Incremental only
Blue (auto-complete)	Incremental and reference mark

Restoring factory defaults

When realigning the readhead, reinstalling the system, or in the case of continued calibration failure, factory defaults must be restored.

NOTE: Restoring factory defaults can also be carried out using the optional ADTi-100 and ADT View software. See www.renishaw.com/adt for more information.

To restore factory defaults:

- 1. Switch system off.
- 2. Obscure the readhead optical window (using the green spacer supplied with the readhead ensuring the cut-out is NOT under the optical window) or connect the 'Remote CAL' output pin to 0 V.
- 3. Power the readhead.
- 4. Remove the spacer or, if using, the connection from the 'Remote CAL' output pin to 0 V.
- 5. The LED will start continuously flashing indicating factory defaults have been restored and the readhead is in installation mode.
- 6. Repeat the 'Readhead set-up' procedure on page 19.

Switching Automatic Gain Control (AGC) on or off

The AGC is automatically enabled once the system has been calibrated (indicated by a blue LED). AGC can be manually switched off by connecting the 'Remote CAL' output pin to 0 V for > 3 seconds < 10 seconds. The LED will be solid green.

NOTE: AGC can be switched on or off using the optional ADTi-100 and ADT View software. See www.renishaw.com/adt for more information.

Troubleshooting

Fault	Cause	Possible solutions
LED on the readhead is blank	There is no power to the readhead	 Ensure 5 V is supplied at the readhead For cable variants, check the correct wiring of connector If using the analogue variant of QUANTIC with the ADTi, ensure the appropriate adaptor cables are connected
LED on the readhead is flashing red during installation mode	The signal strength is < 50%	 Check the readhead optical window and scale are clean and free from contamination Restore factory defaults (see page 21) and check the alignment of the readhead. In particular: Rideheight Yaw Offset Ensure the correct scale and readhead combination
Unable to get a green LED over the complete axis length	System run-out is not within specification	 Use a DTi gauge and check the run-out is within specifications Restore factory defaults (see page 21) Realign the readhead to obtain a green flashing LED at the mid-point of the run-out Recalibrate the system (see page 20)
Can't initiate the calibration routine	Signal size is < 70%	Realign the readhead to obtain a green flashing LED

Fault	Cause	Possible solutions
	The system has failed to calibrate the incremental signals due to the signal strength being < 70%	 Exit CAL mode and restore factory defaults (see page 21) Check the readhead set-up and alignment (see page 19)
During calibration the LED on the readhead remains single-flashing blue even after moving it along the full axis length	Incorrect termination (analogue variant only)	 Check the output signal termination (see page 30) When using the readhead with the ADTi-100 in stand-alone mode ensure the Termination tool (A-6195-2132) is connected Exit CAL mode and restore factory defaults (see page 21) Check the readhead set-up and alignment (see page 19)
During calibration the LED on the readhead is double-flashing blue even after moving it past the reference mark several times	The readhead is not seeing a reference mark	 Ensure correct position of the reference mark selector magnet Ensure you are moving the readhead past your chosen reference mark several times Check the readhead/selector magnet orientation Check the readhead optical window and scale are clean and free from contamination
No reference mark output		 Ensure you are not moving the readhead too fast during calibration mode (maximum speed < 100 mm/sec) Calibrate the system (see page 20) If the system completes the calibration mode, it has successfully seen and calibrated the reference mark. If you still do not see a reference mark, check the system wiring. If the system does not calibrate the reference mark (LED on the readhead remains double-flashing blue), see above for possible solutions.
Reference mark is not repeatable	Only the chosen reference mark that has been used in the calibration sequence is repeatable; other reference marks may not be phased	 Ensure you are using the reference mark that has been calibrated for referencing your system The readhead bracket must be stable and not allow any mechanical movement of the readhead Clean the scale and readhead optical window and check for damage then recalibrate the system over the chosen reference mark (see page 20)

Fault	Cause	Possible solutions
LED on the readhead is flashing red over the reference mark	The reference mark is not phased	 Ensure you are using the reference mark that has been calibrated for referencing your system, as only this reference mark will be guaranteed to remain phased Clean the scale and readhead optical window and check for scratches, then recalibrate the system over the chosen reference mark (see page 20)
Multiple reference marks are being output	The readhead reference mark option is either option B or F, 'All reference marks are output'	 Calibrate the system ensuring all the incremental signal calibration steps and the reference mark phasing steps are completed (see page 20) Ensure you calibrate the reference mark used for referencing your system, as only this reference mark will be guaranteed to remain phased
LED on the readhead is flashing red and purple (analogue variant only)	AGC is outside of the normal operating range	 Check the output signal termination (see page 30) When using the readhead with the ADTi-100 in stand-alone mode, ensure the Termination tool (A-6195-2132) is connected Check the the cable continuity Ensure the correct scale and readhead combination
	Low signal, over signal, or the readhead speed is too fast. The system is in error.	Check the readhead set-up and alignment (see page 19)
LED on the readhead is flashing red four times upon switch on	Incorrect termination (analogue variant only)	 Check the output signal termination (see page 30) When using the readhead with the ADTi-100 in stand-alone mode, ensure the Termination tool (A-6195-2132) is connected Exit the CAL mode and restore factory defaults (see page 21) Check the readhead set-up and alignment (see page 19)

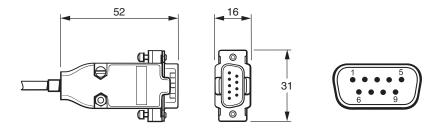
Output signals

Digital outputs

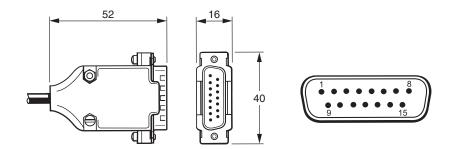
Function	Sig	ınal	Colour	9-way D-type (A)	15-way D-type (D)	15-way D-type alternative pin-out (H)	12-way circular connector (X)	14-way JST (J)	
Power	5 V		Brown	5	7, 8	4, 12	G	10	
Power	0	٧	White	1	2, 9	2, 10	Н	1	
	_	+	Red	2	14	1	M	7	
Incremental	A	_	Blue	6	6	9	L	2	
incremental	B	+	Yellow	4	13	3	J	11	
		_	Green	8	5	11	K	9	
Reference mark	Z	+	Violet	3	12	14	D	8	
neierence mark			. 2	-	Grey	7	4	7	E
Limits	1	P	Pink	-	11	8	Α	14	
Limits		Q	Black	-	10	6	В	13	
Alarm	Е	_	Orange	-	3	13	F	3	
Remote CAL ¹	C	AL	Clear	9	1	5	С	4	
Shield		-	Screen	Case	Case	Case	Case	Ferrule	

The remote CAL line must be connected for use with the ADTi-100.

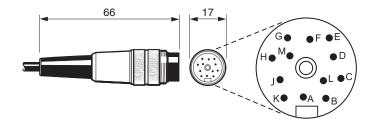
Analogue outputs

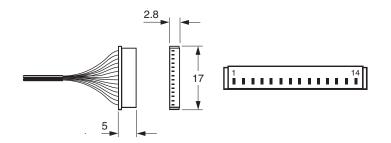

Function		Signal		Colour	15-way D-type (L)	15-way D-type alternative pin-out (H)	14-way JST (J)
Power		5	V	Brown	4, 5	4, 12	10
Power		0 V		White	12, 13	2, 10	1
	Cosine	V	+	Red	9	1	7
Incremental	Cosine	V ₁	_	Blue	1	9	2
incremental	Sine	V	+	Yellow	10	3	11
	Sine	V ₂	-	Green	2	11	9
D-f		V _o	+	Violet	3	14	8
Reference ma	Reference mark		-	Grey	11	7	12
Limits			, b	Pink	7	8	14
Limits		V _q		Black	8	6	13
Setup		V _x		Clear	6	13	6
Remote CAL 1		CAL		Orange	14	5	4
Shield		-		Screen	Case	Case	Ferrule

¹ The remote CAL line must be connected for use with ADTi-100.



QUANTIC readhead termination options


9-way D-type connector (termination code A)


15-way D-type connector (termination code D, L, H)

12-way in-line circular connector (termination code X) ¹

14-way JST connector (termination code J) ²

¹²⁻way circular Binder mating socket (A-6195-0105).

Pack of 5 14-way JST SH mating sockets:
 Bottom mount (A-9417-0025);
 Side mount (A-9417-0026).
 Maximum of 20 insertion cycles for JST connector.

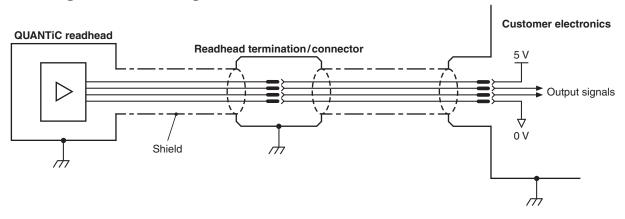
Speed

Digital readheads

Clocked output option (MHz)	Maximum speed (m/s)							Minimum edge separation ¹
	T (10 μm)	D (5 μm)	Χ (1 μm)	Ζ (0.5 μm)	W (0.2 μm)	Υ (0.1 μm)	H (50 nm)	(ns)
50	24	24	24	18.13	7.25	3.626	1.813	25.1
40	24	24	24	14.50	5.80	2.900	1.450	31.6
25	24	24	18.13	9.06	3.63	1.813	0.906	51.0
20	24	24	16.11	8.06	3.22	1.611	0.806	57.5
12	24	24	10.36	5.18	2.07	1.036	0.518	90.0
10	24	24	8.53	4.27	1.71	0.853	0.427	109
08	24	24	6.91	3.45	1.38	0.691	0.345	135
06	24	24	5.37	2.69	1.07	0.537	0.269	174
04	24	18.13	3.63	1.81	0.73	0.363	0.181	259
01	9.06	4.53	0.91	0.45	0.18	0.091	0.045	1038

Analogue readheads

Maximum speed: 20 m/s (-3dB) ²


¹ For a readhead with a 1 m cable.

If the speed exceeds 20 m/s, SDE performance cannot be guaranteed.

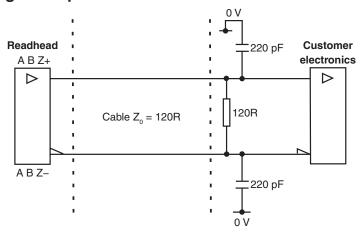
Electrical connections

Grounding and shielding

IMPORTANT: The shield should be connected to the machine earth (Field Ground). For JST variants the ferrule should be connected to the machine earth.

Maximum cable length

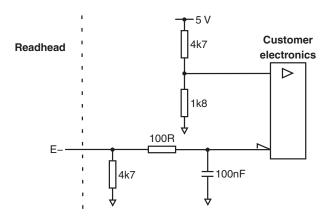
	Analogue	Digital	
Readhead cable	5 m	3 m	
Maximum extension cable length	Dependent on the cable type, the readhead cable length and the clocked output option Contact your local Renishaw representative for more information.		
Readhead to ADTi-100	5 m	3 m	


Remote CAL operation

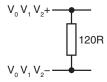
Remote operation of the CAL/AGC is possible via CAL signal.

Recommended signal termination

Digital outputs

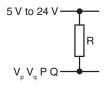


Standard RS422A line receiver circuitry.


The capacitors are recommended for improved noise immunity.

Single-ended alarm signal termination

(not available with 'A' cable termination)

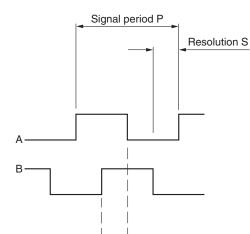

Analogue outputs

NOTE: 120R termination on the analogue output signals is essential for correct AGC operation.

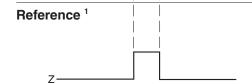
Limit output

(not available with 'A' cable termination)

NOTE: Select R so that the maximum current does not exceed 20 mA. Alternatively, use a suitable relay or opto-isolator.


Output specifications

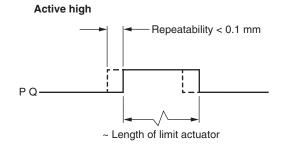
Digital output signals


Form - Square wave differential line driver to EIA RS422A (except limits P and Q)

Incremental 1

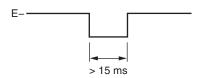
2 channels A and B in quadrature (90° phase shifted)

Resolution option code	P (µm)	S (µm)
T	40	10
D	20	5
Х	4	1
Z	2	0.5
W	0.8	0.2
Υ	0.4	0.1
Н	0.2	0.05


Synchronised pulse Z, duration as resolution. Bi-directionally repeatable. $^{\rm 2}$

NOTE: A wide reference mark option, outputting a reference pulse for the duration of the signal period is available. Contact your local Renishaw representative for more information.

- ¹ For clarity, the inverse signals are not shown.
- ² Only the calibrated reference mark is bi-directionally repeatable.


Limits

Open collector output, asynchronous pulse (not available with 'A' cable termination)

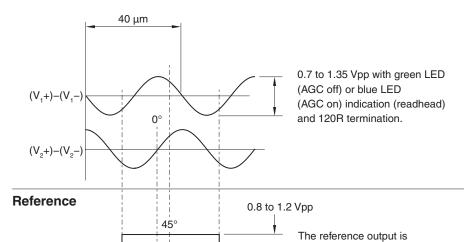
Alarm

Line driven (asynchronous pulse) (not available with 'A' cable termination)

The line driven alarm is asserted when:

- The signal amplitude is < 20% or > 135%
- The readhead speed is too high for reliable operation

or 3-state alarm

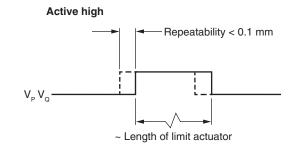

Differentially transmitted signals are forced open circuit for > 15 ms when the alarm conditions are valid.

Analogue output signals

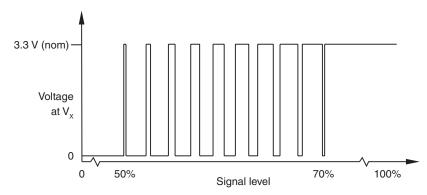
Incremental

 $(V_0 +) - (V_0 -)$

2 channels V₁ and V₂ differential sinusoids in quadrature, centred on ~1.65 V (90° phase shifted)


bi-directionally repeatable. 1

The differential pulse V₀ is


centred on 45°.

Limits

Open collector output, asynchronous pulse

Set-up ²

Between 50% and 70% the signal level V_x is a duty cycle. Time spent at 3.3 V increases with incremental signal level. At > 70% the signal level V_x is nominal 3.3 V.

360° (nom)

Only the calibrated reference mark is bi-directionally repeatable.

² The set-up signal as shown is not present during the calibration routine.

General specifications

Power supply	5V -5%/+10%	Typically 150 mA fully terminated (analogue output)
		Typically 200 mA fully terminated (digital output)
		Power from a 5 Vdc supply complying with the requirements for SELV of standard IEC 60950-1
	Ripple	200 mVpp maximum @ frequency up to 500 kHz
Temperature	System (storage)	-20 °C to +70 °C
	System (installation) 1	+10 °C to +35 °C
	System (operating)	0 °C to +70 °C
Humidity	System	95% relative humidity (non-condensing) to IEC 60068-2-78
Sealing		IP40
Acceleration	System (operating)	400 m/s², 3 axes
Shock	System (operating)	500 m/s², 11 ms, ½ sine, 3 axes
Vibration	Readhead (operating)	100 m/s² max @ 55 Hz to 2000 Hz, 3 axes
	Scale (operating)	300 m/s² max @ 55 Hz to 2000 Hz, 3 axes
Mass	Readhead	9 g
	Cable	26 g/m
EMC compliance		IEC 61326-1
Readhead cable		Single-shielded, outside diameter 4.25 ±0.25 mm
		Flex life $> 20 \times 10^6$ cycles at 30 mm bend radius
		UL recognised component %
	Maximum length	5 m (analogue)
		3 m (digital)
Connector options		Code - connector type
		A - 9-way D-type - Digital output only
		L - 15-way D-type (standard pin-out) - Analogue output only
		D - 15-way D-type (standard pin-out) - Digital output only
		H - 15-way D-type (alternative pin-out)
		X - 12-way circular connector - Digital output only
		J - 14-way JST connector
Typical sub-divisional error (SDE)	Analogue output	< ±120 nm
	Digital output	< ±80 nm

CAUTION: Renishaw encoder systems have been designed to the relevant EMC standards, but must be correctly integrated to achieve EMC compliance. In particular, attention to shielding arrangements is essential.

To limit the maximum tension in the scale (CTE_{substrate} - CTE_{scale}) \times (T_{use extreme} - T_{install}) \leq 550 μ m/m where CTE_{scale} = \sim 10.1 μ m/m/ $^{\circ}$ C

RKLC40-S scale specifications

Form (height × width)		0.15 mm × 6 mm (including adhesive)
Pitch		40 μm
Accuracy (at 20 °C)	RKLC40-S	±15 μm/m
(includes slope and linearity)	RKLC40H-S	±5 μm/m
Linearity	RKLC40-S	±3 μm/m (achievable with 2 point error correction)
	RKLC40H-S	±2.5 μm/m (achievable with 2 point error correction)
Supplied length		20 mm to 20 m (> 20 m available on request)
Material		Hardened and tempered martensitic stainless steel fitted with a self-adhesive backing tape
Mass		4.6 g/m
Coefficient of thermal expansion (at 20 °	C)	Matches that of substrate material when scale ends fixed by epoxy mounted end clamps
Installation temperature		+10 °C to +35 °C
End fixing		Epoxy mounted end clamps (A-9523-4015)
		Approved epoxy adhesive (A-9531-0342)
		Scale end movement typically < 1 μm ¹

¹ The scale and the end clamps must be installed following the installation process (see 'Applying the RKLC40-S scale' on page 15 and 'Fitting the end clamps' on page 16).

Reference mark

Type Customer selected IN-TRAC reference mark, directly embedded into the incremental track. Bi-directional position repeatability	
L ≤ 100 mm	Single reference mark at scale centre
L > 100 mm Reference marks at 50 mm spacing (first reference mark 50 mm from scale end)	
Selection	Customer positioned selector magnet (A-9653-0143) for selecting desired <i>IN-TRAC</i> reference mark
Repeatability	Unit of resolution repeatability (bi-directional) across full system rated speed and temperature ranges

Limit switches

Туре	Magnetic actuators: with dimple triggers Q limit, without dimple triggers P limit (see 'RKLC40-S scale installation drawing' on page 12)		
Trigger point	The limit output is nominally asserted when the readhead limit switch sensor passes the limit magnet leading edge, but can trigger up to 3 mm before that edge		
Mounting	Customer placed at desired locations		
Repeatability	< 0.1 mm		

www.renishaw.com/contact

wk@renishaw.com

© 2019–2023 Renishaw plc. All rights reserved. This document may not be copied or reproduced in whole or in part, or transferred to any other media or language by any means, without the prior written permission of Renishaw.

RENISHAW® and the probe symbol are registered trade marks of Renishaw plc. Renishaw product names, designations and the mark 'apply innovation' are trade marks of Renishaw plc or its subsidiaries. Other brand, product or company names are trade marks of their respective owners. Renishaw plc. Registered in England and Wales. Company no: 1106260. Registered office: New Mills, Wotton-under-Edge, Glos, GL12 8JR, UK. WHILE CONSIDERABLE EFFORT WAS MADE TO VERIFY THE ACCURACY OF THIS DOCUMENT AT PUBLICATION, ALL WARRANTIES, CONDITIONS, REPRESENTATIONS AND LIABILITY, HOWSOEVER ARISING, ARE EXCLUDED TO THE EXTENT PERMITTED BY LAW. RENISHAW RESERVES THE RIGHT TO MAKE CHANGES TO THIS DOCUMENT AND TO THE EQUIPMENT, AND/OR SOFTWARE AND THE SPECIFICATION DESCRIBED HEREIN WITHOUT OBLIGATION TO PROVIDE NOTICE OF SUCH CHANGES.

Part no.: M-9417-9238-04-A Issued: 07.2023